2017-08-21 15:15:46 +00:00
|
|
|
|
%%% Local Variables:
|
|
|
|
|
%%% mode: latex
|
|
|
|
|
%%% TeX-master: t
|
|
|
|
|
%%% End:
|
|
|
|
|
\documentclass{beamer}
|
|
|
|
|
\usepackage[utf8]{inputenc}
|
|
|
|
|
\usepackage[T1]{fontenc}
|
|
|
|
|
\title{There Is No Largest Prime Number}
|
|
|
|
|
\date[ISPN ’80]{27th International Symposium of Prime Numbers}
|
|
|
|
|
\author[Euclid]{Euclid of Alexandria \texttt{euclid@alexandria.edu}}
|
|
|
|
|
|
|
|
|
|
\usetheme{Akatsuki}
|
|
|
|
|
|
|
|
|
|
\begin{document}
|
|
|
|
|
|
|
|
|
|
\begin{frame}
|
|
|
|
|
\titlepage
|
|
|
|
|
\end{frame}
|
|
|
|
|
|
2018-09-03 14:08:09 +00:00
|
|
|
|
%\begin{frame}
|
|
|
|
|
%\frametitle{There Is No Largest Prime Number}
|
|
|
|
|
%\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
|
|
|
|
|
%\begin{theorem}
|
|
|
|
|
% There is no largest prime number.
|
|
|
|
|
%\end{theorem}
|
|
|
|
|
%\begin{enumerate}
|
|
|
|
|
%\item<1-| alert@1> Suppose $p$ were the largest prime number.
|
|
|
|
|
%\item<2-> Let $q$ be the product of the first $p$ numbers.
|
|
|
|
|
%\item<3-> Then $q+1$ is not divisible by any of them.
|
|
|
|
|
%\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime
|
|
|
|
|
%number not in the first $p$ numbers.
|
|
|
|
|
%\end{enumerate}
|
|
|
|
|
%\end{frame}
|
|
|
|
|
%
|
|
|
|
|
%\begin{frame}{A longer title}
|
|
|
|
|
%\begin{itemize}
|
|
|
|
|
%\item one
|
|
|
|
|
%\item two
|
|
|
|
|
%\end{itemize}
|
|
|
|
|
%\end{frame}
|
2017-08-21 15:15:46 +00:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\end{document}
|