%%% Local Variables: %%% mode: latex %%% TeX-master: t %%% End: \documentclass{beamer} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \title{There Is No Largest Prime Number} \date[ISPN ’80]{27th International Symposium of Prime Numbers} \author[Euclid]{Euclid of Alexandria \texttt{euclid@alexandria.edu}} \usetheme{Akatsuki} \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{There Is No Largest Prime Number} \framesubtitle{The proof uses \textit{reductio ad absurdum}.} \begin{theorem} There is no largest prime number. \end{theorem} \begin{enumerate} \item<1-| alert@1> Suppose $p$ were the largest prime number. \item<2-> Let $q$ be the product of the first $p$ numbers. \item<3-> Then $q+1$ is not divisible by any of them. \item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime number not in the first $p$ numbers. \end{enumerate} \end{frame} \begin{frame}{A longer title} \begin{itemize} \item one \item two \end{itemize} \end{frame} \end{document}