From 768f758d43fb3dfdfded338d85505b07e6e3ecbb Mon Sep 17 00:00:00 2001 From: Jeff LANCE Date: Wed, 4 Jan 2017 16:58:57 +0100 Subject: [PATCH] correct tikz lines in mdframed style with fontawesome. --- cours/cours_prof.cls | 62 ++++++++++++++++++++++++++++---------------- 1 file changed, 39 insertions(+), 23 deletions(-) diff --git a/cours/cours_prof.cls b/cours/cours_prof.cls index b2687bc..e871978 100644 --- a/cours/cours_prof.cls +++ b/cours/cours_prof.cls @@ -108,13 +108,17 @@ nobreak=true,% xcolor,% firstextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faPencil} };},% + node[symbol] { \faPencil }; + },% secondextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faPencil} };},% + node[symbol] { \faPencil }; + },% middleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faPencil} };},% + node[symbol] { \faPencil }; + },% singleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faPencil} };},% + node[symbol] { \faPencil }; + },% } \mdfdefinestyle{dash}{% linecolor=white,linewidth=1pt,% @@ -139,21 +143,25 @@ nobreak=true,% xcolor,% firstextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faQuoteLeft} },% + node[symbol] { \faQuoteLeft } \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) - node[symbol] { \faicon{\faQuoteRight} };},% + node[symbol] { \faQuoteRight }; + },% secondextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faQuoteLeft} },% - \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) - node[symbol] { \faicon{\faQuoteRight} };},% + node[symbol] { \faQuoteLeft } + \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) + node[symbol] { \faQuoteRight }; + },% middleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faQuoteLeft} },% - \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) - node[symbol] { \faicon{\faQuoteRight} };},% + node[symbol] { \faQuoteLeft } + \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) + node[symbol] { \faQuoteRight }; + },% singleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faQuoteLeft} },% - \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) - node[symbol] { \faicon{\faQuoteRight} };},% + node[symbol] { \faQuoteLeft } + \path let \p1=(P), \p2=(O) in ($(\x1,.4)+(0,\y2)$) + node[symbol] { \faQuoteRight }; + },% } \mdfdefinestyle{todo}{% linecolor=white,linewidth=1pt,% @@ -170,13 +178,17 @@ shadow=true,% background=gray!40,% firstextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faFileTextO} };},% + node[symbol] { \faFileTextO }; + },% secondextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faFileTextO} };},% + node[symbol] { \faFileTextO }; + },% middleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faFileTextO} };},% + node[symbol] { \faFileTextO }; + },% singleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\faFileTextO} };},% + node[symbol] { \faFileTextO }; + },% } \mdfdefinestyle{warn}{% linecolor=black,linewidth=1pt,% @@ -190,13 +202,17 @@ xcolor,% hidealllines=true, leftline=true,% firstextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\fa-exclamation-triangle} };},% + node[symbol] { \faExclamationTriangle }; + },% secondextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\fa-exclamation-triangle} };},% + node[symbol] { \faExclamationTriangle }; + },% middleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\fa-exclamation-triangle} };},% + node[symbol] { \faExclamationTriangle }; + },% singleextra={\path let \p1=(P), \p2=(O) in ($(\x2,-.4)+1.0*(0,\y1)$) - node[symbol] { \faicon{\fa-exclamation-triangle} };},% + node[symbol] { \faExclamationTriangle }; + },% } \mdtheorem[style=cmpl, theoremseparator={ - }, roundcorner=8pt]{déf}{Définition}