up
This commit is contained in:
109
template.qmd
109
template.qmd
@@ -1,13 +1,10 @@
|
||||
---
|
||||
title: "Template Quarto"
|
||||
subtitle: "pour mes documents"
|
||||
type-document:
|
||||
cours: true
|
||||
document-type:
|
||||
activite: true
|
||||
format:
|
||||
cours-pdf:
|
||||
toc: false
|
||||
author: Jeff LANCE
|
||||
date: last-modified
|
||||
cours-pdf
|
||||
---
|
||||
|
||||
# Introduction
|
||||
@@ -61,9 +58,6 @@ Test : \textcolor{crimsonglory}{Ce texte est en `crimsonglory`}. Ici en normal.
|
||||
Ceci est un définition.
|
||||
\end{definition}
|
||||
|
||||
[En utilisant]{.tanColor} l'extension `latex-environment`.\
|
||||
:::
|
||||
|
||||
:::{.definition options="nouveau"}
|
||||
Ceci est encore une définition.
|
||||
:::
|
||||
@@ -84,6 +78,103 @@ Ceci est encore une définition.
|
||||
Ceci est un théorème.
|
||||
\end{theoreme}
|
||||
|
||||
# Graphique
|
||||
|
||||
## NumPy
|
||||
|
||||
```{python}
|
||||
import numpy as np
|
||||
a = np.arange(15).reshape(3, 5)
|
||||
a
|
||||
```
|
||||
|
||||
## Matplotlib
|
||||
|
||||
```{python}
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
fig = plt.figure()
|
||||
x = np.arange(10)
|
||||
y = 2.5 * np.sin(x / 20 * np.pi)
|
||||
yerr = np.linspace(0.05, 0.2, 10)
|
||||
|
||||
plt.errorbar(x, y + 3, yerr=yerr, label='both limits (default)')
|
||||
plt.errorbar(x, y + 2, yerr=yerr, uplims=True, label='uplims=True')
|
||||
plt.errorbar(x, y + 1, yerr=yerr, uplims=True, lolims=True,
|
||||
label='uplims=True, lolims=True')
|
||||
|
||||
upperlimits = [True, False] * 5
|
||||
lowerlimits = [False, True] * 5
|
||||
plt.errorbar(x, y, yerr=yerr, uplims=upperlimits, lolims=lowerlimits,
|
||||
label='subsets of uplims and lolims')
|
||||
|
||||
plt.legend(loc='lower right')
|
||||
plt.show(fig)
|
||||
```
|
||||
|
||||
|
||||
## Julia
|
||||
|
||||
Plot function pair (x(u), y(u)).
|
||||
See @fig-parametric for an example.
|
||||
|
||||
```{julia}
|
||||
#| label: fig-parametric
|
||||
#| fig-cap: "Parametric Plots"
|
||||
|
||||
using Plots
|
||||
|
||||
plot(sin,
|
||||
x->sin(2x),
|
||||
0,
|
||||
2π,
|
||||
leg=false,
|
||||
fill=(0,:lavender))
|
||||
```
|
||||
|
||||
```{julia}
|
||||
using Plots
|
||||
# define the Lorenz attractor
|
||||
Base.@kwdef mutable struct Lorenz
|
||||
dt::Float64 = 0.02
|
||||
σ::Float64 = 10
|
||||
ρ::Float64 = 28
|
||||
β::Float64 = 8/3
|
||||
x::Float64 = 1
|
||||
y::Float64 = 1
|
||||
z::Float64 = 1
|
||||
end
|
||||
|
||||
function step!(l::Lorenz)
|
||||
dx = l.σ * (l.y - l.x)
|
||||
dy = l.x * (l.ρ - l.z) - l.y
|
||||
dz = l.x * l.y - l.β * l.z
|
||||
l.x += l.dt * dx
|
||||
l.y += l.dt * dy
|
||||
l.z += l.dt * dz
|
||||
end
|
||||
|
||||
attractor = Lorenz()
|
||||
|
||||
|
||||
# initialize a 3D plot with 1 empty series
|
||||
plt = plot3d(
|
||||
1,
|
||||
xlim = (-30, 30),
|
||||
ylim = (-30, 30),
|
||||
zlim = (0, 60),
|
||||
title = "Lorenz Attractor",
|
||||
legend = false,
|
||||
marker = 2,
|
||||
)
|
||||
|
||||
# build an animated gif by pushing new points to the plot, saving every 10th frame
|
||||
@gif for i=1:1500
|
||||
step!(attractor)
|
||||
push!(plt, attractor.x, attractor.y, attractor.z)
|
||||
end every 10
|
||||
```
|
||||
|
||||
# More Information
|
||||
|
||||
You can learn more about controlling the appearance of PDF output here: <https://quarto.org/docs/output-formats/pdf-basics.html>
|
||||
|
||||
Reference in New Issue
Block a user