44 lines
1.0 KiB
TeX
44 lines
1.0 KiB
TeX
%%% Local Variables:
|
||
%%% mode: latex
|
||
%%% TeX-master: t
|
||
%%% End:
|
||
\documentclass{beamer}
|
||
\usepackage[utf8]{inputenc}
|
||
\usepackage[T1]{fontenc}
|
||
\title{There Is No Largest Prime Number}
|
||
\date[ISPN ’80]{27th International Symposium of Prime Numbers}
|
||
\author[Euclid]{Euclid of Alexandria \texttt{euclid@alexandria.edu}}
|
||
|
||
\usetheme{Akatsuki}
|
||
|
||
\begin{document}
|
||
|
||
\begin{frame}
|
||
\titlepage
|
||
\end{frame}
|
||
|
||
\begin{frame}
|
||
\frametitle{There Is No Largest Prime Number}
|
||
\framesubtitle{The proof uses \textit{reductio ad absurdum}.}
|
||
\begin{theorem}
|
||
There is no largest prime number.
|
||
\end{theorem}
|
||
\begin{enumerate}
|
||
\item<1-| alert@1> Suppose $p$ were the largest prime number.
|
||
\item<2-> Let $q$ be the product of the first $p$ numbers.
|
||
\item<3-> Then $q+1$ is not divisible by any of them.
|
||
\item<1-> But $q + 1$ is greater than $1$, thus divisible by some prime
|
||
number not in the first $p$ numbers.
|
||
\end{enumerate}
|
||
\end{frame}
|
||
|
||
\begin{frame}{A longer title}
|
||
\begin{itemize}
|
||
\item one
|
||
\item two
|
||
\end{itemize}
|
||
\end{frame}
|
||
|
||
|
||
\end{document}
|